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ABSTRACT

Questions: Are there general stability conditions for the evolution of multidimensional traits,
regardless of genetic correlations between traits? Can genetic correlations influence whether
evolution converges to a stable trait vector?

Mathematical methods: Adaptive dynamics theory and the weak selection limit of
quantitative genetics.

Key assumptions: Evolutionary change is represented as either (i) any gradualistic adaptive
path in trait space, consisting of a sequence of small-effect mutant invasions, allowing
for pleiotropic mutants, or (ii) a solution to the ‘canonical equation’ of adaptive dynamics with
a gradually varying mutational covariance matrix. Assumption (ii) is a special case of (i).

Conclusions: It is possible to formulate robust stability conditions for multidimensional traits,
but most evolutionary equilibria will not satisfy these conditions. Under the liberal assumption
(i), there will in general be no ‘absolutely convergence stable’ equilibria in multidimensional trait
spaces (except for simplified models). Under the more restrictive assumption (ii), a much larger
proportion of evolutionary equilibria is ‘strongly convergence stable’, i.e. are stable irrespective
of genetic correlations.

Keywords: adaptive dynamics, canonical equation, evolutionary stability, genetic correlations.

INTRODUCTION

An evolutionary analysis of several traits considered together can differ from a set of single-
trait analyses in two basic ways. First, there may be fitness interactions between traits, so
that the strength and perhaps direction of natural selection on one trait depend on other
traits. Fitness interactions may be present both for traits belonging to a single species and
for traits of different species (co-evolution). Second, genetic variation may be correlated
among traits, for instance through genes acting pleiotropically, causing the response to
selection on one trait to be distributed among several traits. Such correlations will mainly
occur for traits within a species. My aim here is to bring together various results from the
literature (e.g. Leimar, 2001, 2005; Cressman et al., 2006; Dieckmann et al., 2006; Brown et al., 2007; Durinx et al., 2008)

to address the question of how fitness interactions and genetic correlations can be taken
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into account when considering evolutionary stability. On the one hand, I will note that it is
essentially futile to expect a completely general stability criterion based solely on (invasion)
fitness, and this state of affairs is particularly acute for multidimensional trait spaces. On
the other hand, I will argue that fitness-based stability criteria can be quite useful, in the
sense of providing a classification of evolutionary equilibria into those where evolutionary
stability is guaranteed only if genetic variation is of a special kind, for instance if genetic
correlations are absent, and those where stability is more robust to genetic details.

Models of adaptive evolution often have the property that change is guided by, but not
fully determined by, fitness. In a given situation, many different mutant phenotypes may
have a fitness advantage over the residents, and are thus potential invaders, implying that the
mutational process plays an important role in deciding which particular invasion will take
place (Matessi and Di Pasquale, 1996). Granting that adaptive dynamics contains at least these
two parts – a process generating genetic variation and natural selection acting on the
variation – one might wonder whether there is much hope of determining attractors of the
dynamics by only looking at the natural selection part. In fact, as we will see, this is not
possible in general.

However, in certain cases stability is less dependent on the details of genetic variation.
The single-trait convergence stability criterion (Eshel and Motro, 1981; Eshel, 1983; Taylor, 1989;

Christiansen, 1991; Metz et al., 1996; Eshel et al., 1997; Geritz et al., 1998) has a rather natural fitness-based
generalization to situations with several traits. Let us use the convention of calling a matrix,
say A, positive definite if its symmetric part, (A + AT )/2, is positive definite, and similarly
for negative definiteness, and so on. The multidimensional criterion then states that the
Jacobian of the selection gradient should be negative definite (Leimar, 2005). This criterion is
sufficient for strong convergence stability, where strong convergence stability is defined as
stability for the canonical deterministic adaptive dynamics (Dieckmann and Law, 1996), provided
the mutational covariance matrix varies in a sufficiently gradual fashion. For the formally
similar weak selection limit of quantitative genetics (Lande, 1979; Iwasa et al., 1991), assuming
a gradually varying genetic covariance matrix, a negative definite Jacobian also implies
stability. So, if one is faced with a negative definite Jacobian, one need not worry about
inter-trait genetic correlations, at least not as long as such correlations vary sufficiently
smoothly. This is clearly a valuable piece of information to have about an evolutionary
equilibrium – one will often lack any kind of a priori information about genetic correlations
– thus lending a particular status to strong convergence stability.

The criterion is nevertheless not entirely robust to the properties of mutational genetic
variation. For instance, strong stability of an equilibrium (a singular point) does not
guarantee that any gradualistic, adaptive path through trait space, consisting of a sequence
of successful mutant invasions, must converge to or even remain near the point. On the
contrary, unless fitness interactions are absent or have a very special form, an adaptive
escape from any small neighbourhood of the point will be possible, although the sequence
of mutations generating such invasions must have unlikely properties (Leimar, 2001).

On the whole, there will usually be little reason to expect gradualistic evolution away from
strongly convergence stable points. It is possible to formulate more robust criteria, at the
expense of having fewer situations where these criteria are satisfied. For instance, one could
require that a point should attract any nearby gradualistic, adaptive path, a property that
may be called ‘absolute convergence stability’ (Leimar, 2001). In addition, there is the question
of whether there is stabilizing selection at a singular point, preventing the appearance of
polymorphisms (Christiansen, 1991). For a single trait, the combination of stabilizing selection
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and convergence stability is usually referred to as ‘continuous stability’ (Eshel and Motro, 1981;

Eshel, 1983).
It is worth noting that maximum robustness obtains when the situation allows an

evolutionary optimization principle (Meszéna et al., 2001; Metz et al., 2008). Such a principle is
assumed to hold when one deals with so-called optimality models. In spite of their quite
special nature, optimality models have played a very important role in life-history theory.

EXAMPLE OF FISHER’S RUNAWAY PROCESS

One can readily find multidimensional examples where a point in the trait space is an
attractor given that certain genetic correlations are absent or small, but ceases to be an
attractor for larger correlations. The most well-known such example, although not usually
thought of in this manner, is Fisher’s runaway process. Using quantitative genetics, Lande
(1981) found that a line of equilibria ceases to attract when the genetic correlation between
male ornament and female preference exceeds a certain value. The phenomenon does not
depend on there being a line of equilibria instead of a point, but will remain if the model is
modified to remove the degeneracy (Fig. 1).

For a male with ornament zm in a population with mean male ornament z̄m and mean
female preference z̄f, reproductive success is the product of survival and mating success,

Wm = e−cz2
m ea (zm − z̄m)z̄f ,

where the parameters c and a determine the cost of the ornament and the choice efficiency.
For a female with preference zf, her choosiness imposes a survival cost,

Wf = e−bz2
f ,

where b determines the cost of choosiness. The selection gradient S used by Pomiankowski
et al. (1991) has two components,

Sm = ∂ logWm/∂ zm|zm = z̄m
= −2cz̄m + az̄f

Sf = ∂ logWf /∂ zf |z f = z̄ f
= −2bz̄f

and is zero at z̄ = z̄* = 0. Applying quantitative genetics, the change in the vector z̄ of mean
values is given by dz̄/dt = 1

2GS, where G is the additive genetic covariance matrix. Since the
selection gradient is linear in z̄, we can write it as S = Jz̄, where J is the Jacobian of the
selection gradient. So, we have dz̄/dt = 1

2GJz̄, with

G = �Vm

C

C

Vf
� J = �−2c

0

a

−2b� GJ = �−2cVm

−2cC

aVm − 2bC

aC − 2bVf
� ,

where Vm and Vf are the additive genetic variances of zm and zf and C is the additive genetic
covariance between these traits. The point z̄* = 0 is an asymptotically stable equilibrium
when the eigenvalues of GJ have negative real parts, which happens if and only if the
determinant is positive and the trace is negative. Since det(GJ) = det(G)det(J) is positive,
z̄* = 0 is stable if aC < 2(cVm + bVf) and unstable if the inequality is reversed (Fig. 1).

In this example of Fisher’s runaway process, the Jacobian happens to be indefinite. In
such cases, the issue of evolutionary stability is best dealt with by saying that the point is
stable if genetic variation satisfies certain conditions, and otherwise it is not.
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ADAPTVE DYNAMICS

Let us begin with a fairly general formulation of adaptive dynamics for a co-evolutionary
situation with N species (Dieckmann and Law, 1996; Metz et al., 1996). Species k has one or more traits
capable of continuous and, in principle, independent variation and xk is a vector of values
of these traits (vectors are regarded as column vectors and transposition indicates row
vectors). In accordance with a long-term evolutionary point of view, fitness plays the role
of determining if, or with what probability, a mutant trait can invade. A mutant with
phenotype x�k has a chance to invade when its fitness exceeds that of the resident species
k phenotype: Fk(x�k,x) > Fk(xk,x). The second argument, x, in the fitness function is the

Fig. 1. For Fisher’s runaway process, the stability of the point (zm,zf) = (0,0) – no male ornament
exaggeration and no female preference – can depend on the genetic correlation between these traits.
In (a) the correlation is zero and the point is stable; the trajectories converge to it. In (b) the correlation
is 0.25 and the point is unstable, as illustrated by the diverging trajectory. Parameter values are
a = 1, b = 0.01, c = 0.1, making the Jacobian J indefinite. The variances are Vm = Vf = 0.04 and the
covariance (a) C = 0 or (b) C = 0.01.
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vector of all trait values of all species, xT = (xT
1, . . . , xT

N), and represents the environ-
ment generated by a community with these traits. When xk is multidimensional, the
mutant can be pleiotropic, meaning that x�k can deviate from xk in more than one trait
component. Pleiotropy of mutant genotypes is how genetic correlations appear in the
dynamics.

The fitness Fk(x�k,x) has the interpretation of a dominant Lyapunov exponent (Metz et al.,

1992; Ferriere and Gatto, 1995) corresponding to the mean rate of change of the logarithm of the
size of the mutant gene subpopulation. Consequently, whenever the mutant is the same as
the resident, Fk(xk,x) = 0 must hold.

Whether a particular mutant x�k invades depends on the sign of Fk(x�k,x). A mutant with
Fk < 0 has no chance of invading in a large population, whereas one with Fk > 0 has a
positive probability of invasion. Taking into account the risk of extinction during an initial
phase of low mutant copy number, one finds that this probability is proportional to Fk, to
lowest order in Fk (Dieckmann and Law, 1996). Even if the phenotype x�k invades, it could still
fail to drive the previous resident xk to extinction and instead produces additional
polymorphism in the community (Metz et al., 1996; Geritz et al., 1998), but such phenomena would
occur only at exceptional points in the trait space.

GRADUALISTIC, ADAPTIVE PATHS IN TRAIT SPACE

If only mutations where x�k is close to xk occur, evolutionary change will be gradual. Such
change can be regarded as guided by the selection gradient. The species k selection gradient,
��kFk(xk,x), is a vector whose ith component is

(��kFk(xk,x))i =
∂ Fk

∂ x�ki x�k = xk

. (1)

At a point where the selection gradient is non-zero, and with x�k close to xk, Taylor
expansion of Fk shows that the mutant x�k has a chance to invade if the scalar product of the
mutational increment with the selection gradient is positive,

(x�k − xk)T
��kFk(xk,x) > 0, (2)

whereas the mutant cannot invade when the scalar product is negative. So, if a mutant x�k
satisfies (2) and thus can invade a resident xk, the reverse invasion, where a mutant xk

invades a resident x�k, cannot happen, at least if the selection gradient is a continuous
function. One can then usually assume that x�k drives xk to extinction (Metz et al., 1996; Geritz et al.,

1998, 2002; Geritz, 2005; Dercole and Rinaldi, 2008). We see that any path through trait space where each
successive change consists of a small mutational increment satisfying (2), with only one
species changing at a time, is a possible trait substitution sequence.

When considering the stability of a point in trait space, one alternative is to take all paths
of this kind into account and to require that any such path starting near to the point should
converge to it. The main benefit of such absolute convergence stability would be that it
guards against a destabilizing influence from any conceivable sequence of mutations with
small increments, although it has the drawback of posing very strict requirements on the
fitness function.
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CANONICAL EQUATION

With gradual change guided by the selection gradient and a given distribution of
mutational increments, the law of large numbers ensures that all but a small proportion
of sample paths will be close to an average path, or trajectory. Dieckmann and Law (1996)

derived an equation of the form

d

dt
xk = mk(x)Ck(xk)��kFk(xk,x) (3)

for the trajectory in the so-called deterministic limit of small mutational increments, and
referred to it as the canonical equation. In this equation, the real-valued, positive function
mk accounts for variation in the rate of occurrence of mutations, for instance because of
variation in population size, and the distribution of increments is point symmetric about the
origin with covariance matrix Ck.

A covariance matrix is symmetric and positive definite or, for a degenerate distribution,
positive semidefinite. Assuming positive definiteness, we see that inequality (2) will hold for
a small increment in xk along a trajectory produced by the canonical equation.

To correctly apply the canonical equation, it is important to note that it represents an
idealization of a situation with small but finite mutational increments. In particular, near to
where the selection gradient is zero, the equation might provide an inaccurate picture of
the adaptive dynamics, for instance because we can no longer assume that an invading
phenotype will drive the previous resident to extinction (Durinx et al., 2008). It will be convenient
to write the canonical equation as

d

dt
x = B(x)��F (x,x), (4)

where B is a block diagonal, symmetric, positive definite matrix with blocks Bkk = mkCk, and
��F (x,x) is the vector of selection gradients of all species. These express the two parts of
the canonical adaptive dynamics: the process generating genetic variation is described by
the mutational matrix B and natural selection by the selection gradient ��F (x,x).

In addition to providing a useful approximation of gradual adaptive change through a
sequence of mutant invasions, the canonical equation has the same form as the equation for
the vector of average breeding values used in quantitative genetics, assuming weak selection
or, equivalently, small genetic variances (Lande, 1979; Iwasa et al., 1991). Thus, it is quite reasonable
to take the canonical equation as a starting point for considerations of evolutionary
stability.

SINGULAR POINTS

A point x* in trait space where the selection gradients of all species are zero is called
‘singular’,

��F (x*,x*) = 0, (5)

and it is among such points that one should look for stable equilibria of the adaptive
dynamics. When no nearby phenotype of any species can invade a singular point, it is said
to be locally uninvadable. Uninvadable singular points are commonly referred to as ESSs.
This terminology is somewhat unfortunate, and will not be used here, since it deviates from
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what is usually understood by stability for dynamical systems; from the term ‘evolutionarily
stable strategy’ one might have expected that the point would be an attractor of some
evolutionary dynamics, but uninvadability does not have this interpretation in general.

Around a singular point x*, mutant fitness has the Taylor expansion

Fk(x�k,x*) = 1–
2

(x�k − x*k)T Hkk(x�k − x*k) + . . . (6)

where the matrix Hkk, referred to as the selection Hessian, has elements

(Hkk)ij =
∂ 2Fk

∂ x�ki ∂ x�kj x�
k

= x*
k

,x = x*

. (7)

We see that for the point to be locally uninvadable, it is sufficient that the selection Hessians
of all species are negative definite and necessary that they are negative semidefinite.

The adaptive dynamics near a singular point can be investigated using Taylor expansion
of the selection gradient (see Appendix):

��F (x,x) = J(x − x*) + . . . (8)

The matrix J is the Jacobian of the selection gradient and it is given by

J = H + Q , (9)

where H is a symmetric, block diagonal matrix with the selection Hessians Hkk as blocks,
and Q is a matrix with blocks Qkl, with elements

(Qkl)ij =
∂ 2Fk

∂ x�ki ∂ xlj x�
k

= x*
k

,x = x*

. (10)

If the mutational matrix B(x) in (4) varies smoothly with x around the singular point, and
with A = B(x*), the linearized canonical equation becomes

d

dt
(x − x*) = AJ(x − x*). (11)

The mutational matrix A is symmetric, positive definite, and, with more than one species,
block diagonal, whereas nothing can in general be assumed about the Jacobian J. Note
finally that it is meaningful to linearize the canonical equation only if the mutational
increments are considerably smaller than the range around a singular point where (11) is an
acceptable approximation of (4).

CRITERIA FOR EVOLUTIONARY STABILITY

Taking the canonical equation (4) as a starting point, a natural fitness-based stability
criterion would be a requirement on the fitness function that implies stability for a whole
class of mutational processes. In the case of a single species, where mutational genetic
variation in any two traits conceivably could be correlated, let us define strong convergence
stability of a singular point to mean that the point is an asymptotically stable equilibrium of
the canonical adaptive dynamics for any smoothly varying, symmetric, positive definite
mutational matrix B(x). For a situation with several species, one would instead require
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stability only for a subset of these mutational matrices, namely those with an appropriate
block diagonal structure, corresponding to the absence of interspecific genetic correlations.

A singular point x* will be asymptotically stable if all eigenvalues of the matrix AJ in the
linearized canonical equation (11) have negative real parts and unstable if at least one
eigenvalue has a positive real part (this is Lyapunov’s criterion). One can then formulate
stability criteria as requirements on the Jacobian J of the selection gradient, ensuring that
the eigenvalues of AJ have negative real parts for any symmetric, positive definite A with an
appropriate block diagonal structure.

Strong convergence stability for a single species

For a single species, a result by Hines (1980) and Cressman and Hines (1984), which appears
as matrix algebra result 1 in the Appendix, provides an explicit formulation of the require-
ments on the Jacobian of the selection gradient (Leimar, 2005):

• For strong convergence stability of a singular point, it is sufficient that the Jacobian of
the selection gradient is negative definite at the point, whereas if the Jacobian is not
negative semidefinite, there is some mutational matrix for which the point is an unstable
equilibrium of the canonical equation.

Conversely, with a positive definite Jacobian, instability is guaranteed, since a variant of
result 1 in the Appendix would state that all eigenvalues of AJ in (11) have positive real
parts for any symmetric, positive definite A. There is also an intermediate scenario, when
the Jacobian is indefinite at a singular point, and one might then want to characterize the set
of mutational matrices A yielding stability in (11) for the particular matrix J in question.
Except for two-by-two matrices, where the calculations are easy (see Appendix), an explicit
characterization appears not to be available.

Note that uninvadability of a singular point plays no role in the stability criterion for the
canonical equation (although one sees from (9) that negative definiteness of the selection
Hessian H ‘helps’ to make the Jacobian J negative definite). However, as noted above, the
validity of the canonical equation near a singular point cannot be taken for granted, and
this is where uninvadability enters the picture. From (6), when the selection Hessian is
indefinite or positive definite, there will be disruptive selection along some direction in trait
space, which might result in an accumulation of genetic variation along that direction
(Christiansen, 1991; Eshel et al., 1997). An especially interesting type of accumulation of genetic
variation is a branching of the evolutionary trajectory, which could be induced by
disruptive selection at a singular point (Christiansen, 1991; Metz et al., 1996; Geritz et al., 1998). Clearly, a
build-up of genetic variation invalidates both the idea of invading mutations replacing the
residents and the assumption of small genetic variances needed for the quantitative genetics
version of the canonical equation. In summary:

• At a locally uninvadable singular point, mutant phenotypes are not exposed to disruptive
selection that could lead to an accumulation of genetic variation.

The vagueness of the statement is a reflection of our currently rather limited knowledge,
for instance about how the nature of the mutational process influences the build-up of
genetic variation (see also Durinx et al., 2008).
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Nevertheless, it is reasonable to define a continuously stable strategy (CSS) as a locally
uninvadable, strongly convergence stable singular point (Leimar, 2005). We then have the follow-
ing stability criterion:

• For a singular point to be a CSS, it is sufficient that the selection Hessian and the
Jacobian of the selection gradient are negative definite at the point and necessary that
they are negative semidefinite.

This criterion agrees with the formulation of multidimensional continuous stability by
Lessard (1990). In general terms, the idea behind multidimensional continuous stability is
that, when it applies, one need not fear that the particularities of genetic variation could
compromise stability, at least not within a quite reasonable class of mutational processes.

In connection with the criteria above, involving second-order derivatives of a fitness
function F (x�,x) at a singular point x� = x = x*, it is worth noting that the identity
F (x,x) = 0 implies certain relationships between derivatives, making it possible to formulate
the criteria in different but equivalent ways. For instance, for a one-dimensional trait space,
one can eliminate the mixed derivative and instead use the second-order partial derivatives
with respect to x� and x, as was done by Metz et al. (1996) and Durinx et al. (2008).

Absolute convergence stability

It is possible to go further in the direction of stability being robust to the nature of
mutational genetic variation (Leimar, 2001). Let us define absolute convergence stability of a
point to mean that all conceivable gradualistic, adaptive paths starting near the point will
converge to it. Again considering a single species, suppose the fitness function has the
property that, at least in the vicinity of a singular point x*, the selection gradient points in
the same direction as the gradient of some function U(x) with a single (local) maximum
at x*. The selection gradient can then be expressed as

��F (x,x) = α(x)�U(x) , (12)

where α is a positive function. In such a case, any gradualistic, adaptive path, with small
increments satisfying inequality (2), will proceed to higher and higher values of U, and thus
approach the singular point x*.

Note that the Jacobian of a selection gradient of this form must be symmetric at the
singular point (since �U(x*) = 0 holds). On the other hand, in cases where the Jacobian is
not symmetric, at least some gradualistic, adaptive paths will diverge from the singular
point. To see this, consider an entirely hypothetical sequence of mutations where the (small)
mutational increments happen to be in a direction that is a linear function of the direction
of the selection gradient; for instance, assume that only mutations in the direction
A��F (x,x) occur, where A is some as yet unspecified matrix. As long as this matrix A is
positive definite, these mutations satisfy inequality (2) and have a chance to invade. Linear-
izing around a singular point x*, we get an equation like (11), where the matrix A is positive
definite but not necessarily symmetric. If J is not symmetric, matrix algebra result 2 in the
Appendix then tells us that one can find an A that makes the point unstable. We then have
the following criterion:

• For absolute convergence stability of a singular point, it is sufficient that the selection
gradient in the vicinity of the point can be expressed in the form (12), whereas it is
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necessary that the Jacobian of the selection gradient is symmetric and negative
semidefinite at the point.

For a one-dimensional trait space, the selection gradient of any smooth fitness function
can be expressed in the form (12) around a convergence stable point [for instance, by
choosing α = 1, U(x*) = 0 and solving (12) as a differential equation for U(x) in the vicinity
of x*; because the selection gradient changes sign from positive to negative at a convergence
stable point, U has a maximum at x*]. However, with multidimensional trait spaces, there
is in general no reason to expect the matrix Q in (10) to be symmetric, and (9) then shows
that there is no reason to expect J to be symmetric. Thus, apart from the single-trait case,
absolute convergence stability is a very restrictive requirement that in general is fairly
unlikely to hold.

Perhaps the most important point to note is that the hypothetical sequence of mutations
described above is quite unrealistic: the direction of increments must differ for nearby
points, with a discontinuity at the singular point. Since the sequence is representative of
what is needed for an adaptive escape from a strongly stable point, it is justifiable to have
faith in strong convergence stability.

Co-evolutionary stability

For co-evolutionary fitness interactions, let us define strong convergence stability of a
singular point as asymptotic stability of the canonical adaptive dynamics for any smoothly
varying, symmetric, positive definite, block diagonal mutational matrix, where the blocks
correspond to the absence of interspecific genetic correlations. Since mutational matrices
where only one species mutates are a limiting case of the set of matrices considered, we
immediately have the following criterion, where the matrices Hkk and Qkk are from (7) and
(10) above:

• For co-evolutionary strong convergence stability of a singular point, it is necessary that
for each species k in the community, the Jacobian Jkk = Hkk + Qkk is negative semidefinite
at the point.

The criterion is not the sharpest possible – some condition involving the off-diagonal blocks
Jkl of the total Jacobian ought to be added. Just as for the single-species case, negative
definiteness of J is sufficient for strong stability; however, negative definiteness of J is
unduly restrictive when interspecific genetic correlations are absent. Presumably, negative
definiteness of the Jkk forms part of a sharper sufficient condition.

In the case of two species, each with a single trait (see Abrams et al., 1993; Motro, 1994; Marrow et al.,

1996a; Matessi and Di Pasquale, 1996), it is straightforward to work out this sharper condition (see
Appendix). In the criterion, note that the blocks of J are one-by-one matrices, i.e. numbers.

• Consider two species, each with a single trait. For strong convergence stability of a
singular point, it is sufficient that the Jacobian at the point satisfies det(J) > 0, J11 < 0,
J22 < 0 and necessary that the corresponding weak inequalities hold.

As pointed out by Marrow et al. (1996a), a singular point that fails the necessary condition
cannot be regarded as unstable without further qualification. So, if the condition on the
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Jacobian fails, all one knows is that there are some (diagonal) mutational matrices making
the point unstable. In such a case, one might want to characterize the set of mutational
matrices yielding stability (see Appendix).

Returning to general co-evolutionary interactions we can, in analogy with the single
species case, define a CSS as a locally uninvadable, strongly convergence stable singular
point. As pointed out in connection with equations (6) and (7) above:

• For a singular point to be locally uninvadable, it is sufficient that the selection Hessians
Hkk of all species are negative definite at the point and necessary that they are negative
semidefinite.

ILLUSTRATION OF STABILITY CRITERIA

The weak selection limit of quantitative genetics (Iwasa et al., 1991), used for the example of
Fisher’s runaway process (see above; Fig. 1), has the same form as the canonical equation.
For the runaway process, the primary reason for an ornament-preference genetic correlation
would be assortative mating in a genetically variable population (Lande, 1981), making
quantitative genetics a natural modelling approach, but pleiotropic mutations could in
principle lead to runaway. Whatever the cause of genetic correlations, we can conclude that
the singular point z̄* = 0 in the example is not strongly convergence stable for parameter
values where the Jacobian of the selection gradient is indefinite. For the example, efficient
choice (large a) at low cost (small b) and an ornament that can be exaggerated fairly cheaply
(small c) tend to make the Jacobian indefinite.

The fitness interactions described in this example could in principle occur between species
(say, some sort of pollination interaction). In such a case, one would no longer expect the
traits to be correlated, and the conclusion about the stability of the singular point changes.
It is straightforward to see that the point satisfies the two-species, single-trait strong
convergence stability criterion above. Since the point is also uninvadable, it is in fact a
co-evolutionary CSS.

The circumstance that strong and absolute convergence stability are equivalent for one-
dimensional trait spaces has sometimes been used as a technical device to locate stable
equilibria. A well-known instance is the so-called MacArthur product rule for sex allocation
(Charnov, 1982), which is illustrated in Fig. 2 (using a special case of the hermaphrodite life-
history example worked out in the Appendix). In one dimension, it is always possible to find
some function U(x) that has a (local or global) maximum at a convergence stable point x*.

In multidimensional trait spaces, strong convergence stability is less restrictive than
absolute convergence stability. A joint analysis of the traits of sex allocation and
reproductive effort, which usually are dealt with separately, can serve as an illustration.
With the fitness function assumed for the hermaphrodite life-history example (see
Appendix), a separate analysis of sex allocation finds a continuously stable allocation
(Fig. 2) and a separate analysis of reproductive effort similarly finds a globally optimal, and
thus continuously stable, effort. It would be disturbing, and quite a blow to sex allocation
theory and life-history theory, if a joint analysis of the two traits invalidated these
conclusions. Instead, to the extent that the canonical equation, or the corresponding
quantitative genetics equation, provides an acceptable approximation of evolutionary
change, the uninvadability and strong convergence stability, and thus multidimensional
continuous stability, of the singular point x* confirm the separate analyses (see Appendix).
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Nevertheless, as Fig. 3 illustrates (see also Appendix), an adaptive escape from any small
neighbourhood of x* is possible, showing that x* lacks absolute convergence stability. One
could then imagine a ‘Darwinian demon’, judiciously supplying suitable mutations, creating
havoc for, among other things, sex allocation theory and life-history theory (Leimar, 2001).
In practice, there is probably no need to worry about such ‘Darwinian demons’, but
the example makes it clear that the issue of evolutionary stability cannot be dealt with
effectively without making assumptions about the mutational process.

DISCUSSION

Using the canonical adaptive dynamics, or the weak selection limit of quantitative genetics,
as a starting point for considerations of evolutionary change and stability has the advantage
of taking into account the basic phenomena of fitness interactions and genetic correlations
in a way that is both amenable to analysis and acceptably realistic. In fact, there seems to be
no other competing approach delivering a similarly pleasing combination of transparency
and relevance. Certainly, a canonical adaptive dynamics can only provide an approximation
of real evolutionary processes, and there may well be situations where other formulations
are desirable (Dieckmann and Law, 1996). At the present time, however, a really general dynamical
treatment of evolutionary stability is only available for the canonical adaptive dynamics
and other formally similar dynamical formulations, like the weak selection limit of
quantitative genetics.

In any case, a search for the Holy Grail of a universal fitness-based stability criterion,
with the power to unambiguously separate stable from unstable, is bound to fail. Such a
state of affairs should, however, not cause us to give up using fitness-based stability criteria.
Instead, it would be wiser to make use of the kind of classification of singular points in trait
space that after all can be achieved. A good reason for such a practice would be if there are

Fig. 2. Strong convergence stability in a one-dimensional trait space, as illustrated by MacArthur’s
product rule (Charnov, 1982). For fixed reproductive effort x2, the stable sex allocation x1 in the
hermaphrodite life-history example (for simplicity, fix effort at semelparity: x2 = 1) can be found by
maximizing MacArthur’s product U(x1) = (x1)a(1 − x1)b. For the case illustrated, with a = b = 0.5,
gradual adaptive change must be towards x*1 = 0.5, increasing the value of U, showing that the form
(12) applies.
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stability criteria that define a fairly large expanse of middle ground, between being
restrictive enough to ensure stability for more than some very special types of mutational
genetic variation and being lenient enough to have a chance to be satisfied in the kinds
of situations one wants to analyse. I suggest that strong convergence stability is such a
valuable middle-ground criterion. Absolute convergence stability, on the other hand, is so
demanding for multidimensional trait spaces that it will often not apply. Nevertheless, for
the analysis of many models of simple structure, absolute convergence stability can still be a
very useful tool (e.g. Van Dooren and Leimar, 2003; Leimar et al., 2004).

It is worth noting the difference between the perspective presented here and the so-called
‘streetcar theory of evolution’ (Hammerstein and Selten, 1994; Hammerstein 1996; Marrow et al., 1996b). A main
aim of the streetcar theory is to show that purely phenotypic, fitness-based criteria can be
used to determine ‘final stops’ of an evolutionary process, valid for quite general underlying
genetic mechanisms. The streetcar theory succeeds in this aim by limiting consideration to
the uninvadability of points in trait space.

However, convergence stability would appear to be of equal, if not greater, relevance to
the long-term outcomes of evolutionary processes. A natural question, then, is whether
there are purely phenotypic criteria determining final stops also with regard to convergence
stability (Weissing, 1996). Taking into account the quite realistic scenario of multidimensional
trait spaces with general fitness interactions, my analysis of absolute convergence stability
shows that any purely fitness-based convergence stability criterion must be so restrictive that

Fig. 3. Gradualistic, adaptive paths in the trait space of an iteroparous hermaphrodite. The point
x* = (0.5, 0.5), with equal allocation to male and female function and 50% yearly survival, is strongly
convergence stable and uninvadable, and thus a CSS. Nevertheless, for very special mutational
distributions, an adaptive escape starting from nearby the point is possible, as exemplified by the
dashed path. By instead letting mutational increments in any direction be equally likely, there is
prompt convergence to x*, as illustrated by the solid path.
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there will often be no final stops of this kind. With general fitness interactions, one should
not expect the Jacobian of the selection gradient to be symmetric at a singular point, from
which follows that an adaptive escape from a neighbourhood of the point will be possible
(cf. Fig. 3).

In fact, the typical situation for general fitness interactions may well be that for any two
points in trait space, there will be gradualistic, adaptive paths starting nearby the first and
passing nearby the second, and similarly from the second to the first (Leimar, 2001). Since some
of these adaptive paths would be realized only if ‘Darwinian demons’ were to supply
precisely the required pleiotropic mutations, whereas for naturally occurring mutational
processes such paths are extremely unlikely, it is clear that one needs to include some
genetics in phenotypic modelling.

In particular, one needs to take into account the effects of inter-trait genetic correlations
on evolutionary stability. The value of the concept of strong convergence stability is that
it guarantees stability for arguably the most important situation, where such genetic
correlations vary in a gradual fashion. This makes it the main criterion of convergence
stability in multidimensional trait spaces.
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APPENDIX

Taylor expansion of the selection gradient

To derive the expansion (8, 9), first note that around a singular point x = x* the component
(1) of the selection gradient has the Taylor expansion

(��kFk(xk,x))i = �
l

�
j

∂
∂ xlj

� ∂ Fk

∂ x�ki x�
k

= x
k

�
x = x*

(xlj − x*lj) + . . .

Evaluating the derivative with respect to xlj, and using notation from (7) and (10), we can
write this as

��kFk(xk,x) = Hkk(xk − x*k) + �
l

Qkl(xl − x*l) + . . .

Thus, the Taylor expansion of the selection gradient around x* is

��F (x,x) = (H + Q)(x − x*) + . . .

Matrix algebra results

For a linearized adaptive dynamics of the form

d

dt
z = AJz,

it is of interest to characterize the set of matrices J having the property that the eigenvalues
of AJ have negative real parts for any matrix A from some subset of the positive definite
matrices. The following two results are relevant for the case of a single species:

1. For J negative definite and A symmetric and positive definite, all eigenvalues of AJ have
negative real parts, whereas if J is not negative semidefinite, there is some symmetric,
positive definite A such that some eigenvalue of AJ has positive real part.

2. For J symmetric and negative definite and A positive definite, all eigenvalues of AJ have
negative real parts, whereas if J is not symmetric, there is some positive definite A such
that some eigenvalue of AJ has positive real part.

The first result is due to Hines (1980) and Cressman and Hines (1984). For the second result,
here is a quick sketch of a proof. The first implication follows by noting that −zTJz is a
Lyapunov function for the linearized dynamics. For the second implication, to any non-
symmetric matrix J one can readily construct a positive definite A, by adding a suitable
antisymmetric part to the identity matrix (which has no effect on positive definiteness), such
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that the trace of AJ becomes positive, implying that some eigenvalue of AJ must have
positive real part.

Two-dimensional trait spaces

For two-dimensional trait spaces, corresponding to either a single species with two traits or
a co-evolutionary case of two species, each with a single trait, detailed stability criteria for
the canonical equation are easy to derive. For the linearized canonical equation (11), with A
and J two-by-two matrices, both eigenvalues of AJ have negative real parts if and only if
det(AJ) = det(A)det(J) > 0 and tr(AJ) < 0. Since det(A) > 0 for a symmetric, positive definite
A, we have

det(J) > 0 (A1)

as the first part of a criterion for negative real parts of the eigenvalues of AJ. Let
Js = (J + JT )/2 denote the symmetric part of J. Since A is symmetric, tr(AJ) = tr(AJs), and
we have

tr(AJs) = A11J11 + A22J22 + A12(J12 + J21) < 0 (A2)

as the second part of the criterion. Let us look more closely at (A2).
A single species: The mutational matrix A can be any symmetric, positive definite matrix.

By noting that the symmetric matrix Js can be diagonalized by an orthogonal trans-
formation, and that tr(AJs) is invariant under the transformation, we arrive at three cases.
First, for a negative definite J, i.e. when both (real) eigenvalues of Js are negative, (A2) holds
for all these A. Second, when only one eigenvalue of Js is negative, (A2) holds for some but,
if the other eigenvalue is positive, not all of these A. Third, when neither of the eigenvalues
of Js is negative, none of these A satisfy (A2). Note that the first of the cases implies strong
convergence stability: for a negative definite J, both (A1) and (A2) must hold.

Two species: The mutational matrix A can be any diagonal matrix with positive diagonal
elements. For such A, (A2) becomes

A11J11 + A22J22 < 0. (A3)

First, if both J11 and J22 are negative, (A3) holds for all these A. Second, if only one of J11

and J22 is negative, (A3) holds for some but, if the other Jkk is positive, not all of these A.
Third, if neither J11 nor J22 is negative, none of these A satisfy (A3). Note that the first of
the cases, together with (A1), implies co-evolutionary strong convergence stability.

Example: Hermaphrodite sex allocation and reproductive effort

Consider an iteroparous hermaphrodite with two traits: allocation to male function
(0 ≤ x1 ≤ 1) and reproductive effort (0 ≤ x2 ≤ 1). For a mutant x� in a population with x,
reproductive success is proportional to

W(x�,x) =
(x�1x�2)a

(x1x2)a ((1 − x1)x2)b + ((1 − x�1)x�2)b + (1 − x�2),

where the three terms are success as male, success as female, and survival to next year (the
expression is a combination of the standard division of the current-year reproduction R
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into male and female function and the form, W = R + S, where S is survival to next year,
often used to study iteroparity vs. semelparity). The parameters a and b allow for non-linear
relations between investment in male and female function and reproductive success,
describing phenomena such as diminishing returns on investment and the degree to which
success as one sex is obtained at the expense of success as the other sex. With
a,b < 1, hermaphroditism is usually regarded as stable (Charnov, 1982). Taking fitness to be
F (x�,x) = logW(x�,x) − logW(x,x), the selection gradient is ��F (x,x) = ��W(x,x)/W(x,x).
With a = b = 0.5, there is a singular point at x* = (0.5,0.5). Performing two separate one-
dimensional analyses, one can see that, for any fixed reproductive effort, the allocation
x*1 = 0.5 is continuously stable and, regarding this allocation as fixed, the reproductive
effort x*2 = 0.5 is continuously stable (actually, a global optimum). For a two-dimensional
analysis, the selection Hessian (7), the matrix Q in (10), and the Jacobian (9) of the selection
gradient are easily computed at x*:

H =
2

3�
−1

0

0

−1� Q =
2
3�

−1

−1

0

0� J = H + Q =
2

3�
−2

−1

0

−1� .

Since H and J are negative definite, we conclude that the point is locally uninvadable and
strongly convergence stable, and thus a (multidimensional) CSS.

However, the Jacobian is not symmetric, which implies that there is some positive definite
A such that AJ has some eigenvalue with positive real part (matrix algebra result 2 above).
For instance, with

A = �1

5

−5

1� AJ =
2

3�
3

−11

5

−1� ,

the eigenvalues of AJ are λ = 2
3(1 ± i√51), which means that if mutations in the direction

AJ(x − x*) predominate, an adaptive escape from x* occurs (Fig. 3).
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